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A Classification of Automatic Program Synthesis
Systems

Todd A. Gross
Thomas A. Nartker
Dept. of Electrical Engineering and Computer Science
University of Nevada, Las Vegas

January 19, 1988

1 Introduction

A great deal of attention has been paid lately to improving the process of devel-
oping software. Most of this attention has been ditected to the development of
tools to perform tasks for the user (e.g. editors, debuggers) and environments to
integrate these tasks. This paper, however, is about another method of stream-
lining software development: creating programs to generate the software for us.
That is, we tell the program what type of software we want to generate and it
generates the software for us. This process has been given many names: auto-
matic programming {2,7,25], program generation {14,29], synthetic programming
(16], program construction (4,37], program writing [28], metaprogramming {27)
and autoprogramming [9] among several. In this paper, we shall refer to this
ptocess as automatic program synthesis, or APS.

In Section 2 we define the term automatic program synthesis. Section 3 gives
a set of classifications of various APS systems. Section 4 gives the authors’ con-
clusions about existing APS systems and about the field of automatic program
synthesis in general. Section 5 comments on the related yet distinct area of
application generation.

2 What is Auiomatic Program Synthesis?

It is important that we have a clear definition of antomatic program synthesis,
because there are several types of systems that perform tasks similar to those
outlined in this paper. For instance, compilers accept descriptions of what we
want in the form of higher-level programs and produce software in the form
of machine code. We do not consider compilets to be APS systems, because
all necessary information about the problem, including a step-by-step solution,
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ts provided by the user. It is worth noting, however, that many authors see
highet-level languages as in the realm of antomatic program synthesis, see for
instance {6,14,23].

It is easier to clarify what we mean by breaking the term “automatic program
synthesis” into its three components. Automatic means with the aid of the
computer. Clearly, computers must play a role in the creation of ptograms, but
perhaps less clearly, they cannot perform the entire task for us. The part of the
task they do perform is called synthesis, and will be defined later.

A program, for the purposes of this paper, is the object we generate using
our APS system. It is a series of statements that, when executed, produce
the desired output given all necessary inputs. Usually, the program is written
in an executable higher-level language, although some papers [15,31] used a
nonexecutable algorithmic language.

Synthesis is the process of creating code by computer. Many different
types of programs synthesize code—including compilers, editors, optimizers, and
decision table systems (discussed in [14]}. In APS systems, code is generated
from a nondelerministic description of the program. Which means that the
description allows for several possible programs to be generated. Put another
way, the description says what we want the generated program to do, not how
we want the program to do it. The description. being nondeterministic, cannot
be a program itself—it must be transformed into a program by the APS system.

We now define automatic program synthesis as the generation by the com-
puter of a program {or programs) given a nondeterministic description of the
program(s). All systems mentioned in the remainder of this paper {(excepting
those described in [14]) conform to this definition.

3 Classifying APS Systems

One can view the process of automatic program synthesis from two perspectives:
that of the person who designed the APS system, and that of the person who
uses it. From the user's perspective, the APS system is basically a black box:
one gives it a description of the program one wants generated, and after some
calculation it returns the desired program. Thus from the user's perspective,
the most important aspect of the APS system is how one describes the program
to the system. Formally, we call the program description a specification.

From the designer’s perspective, the system is a good deal more complex.
There are two major components of the APS system: the knowledge hase and
the code generator. The knowledge base contains information about how to op-
erate on the specifications, and the code generator takes this knowledge and the
specifications and generates the program. Note that this is by no means a clean
division—in some cases the “knowledge base™ is basically a set of predicates
huried inside the code generator [10], in others the “code generator” is basically
the actions taken by the knowledge base [30]. Still, it's an important distinction
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to make, because the APS system designer can decide how to intetconnect the
two components to best suit the type of problem he or she wishes to solve.

3.1 Classification of Specifications

There are several basic means of specifying one’s problem—logical predicates,
input-outiput pairs, program traces, and natural language sentences are the most
common.

Logical predicates are the oldest [39] and most common [13,15,16,20,21,22,
26,30,31,35,36,39] means of specifying inputs to APS systems. Typically, the
specification would look something like:

(¥i € D)[f(i,0) + pli,0) Ao € R]

where f is the programn we want to create, i and o are the input and output
to the program, D and R are the domain and range of the program, and p is
a first-order logic sentence using bound variables i and o. Different systems,
however, will use somewhat different logical forms. For instance, in [15), the
universal quantifier is assumed and thus left out. In DEDALUS (in [30}), the
specification structure is less formulaic and instead of f(i,0) being a relation
between the input and output we have o = f(i) where f is a function on the
input. These formulae are logically equivalent. As an example of a logical
specification, we give one for finding the maximum element in a list:

(VL € L£)[max(L,m) «s me L A(Ye € L){m :e]Ame Z]

where C is the set of all lists of integere, Z is the set of all integers, and m is
the maximal element of the list.

Input-output pairs have been used in fewer systems [10,11,37), despite their
relative simplicity. One merely provides a set of inputs to your desired solution
and the corresponding outputs. For instance, in the case of max we might give:

() -> nil (12) > 2
(1) -> 1 (21) -> 2

where the left side of the arrow has our input list and the right side our desired
output.

Specification by program trace has been used in a few systems: autopro-
grammer [8,9), I'C [33]. and PSI [21,22]. autoprogrammer must be given a
step-by-step execution of statements, but I'C and PSI need only be given snap-
shots of memoty and conditional tests. As an example, we'll do a sample run
of max on the list (2 1) as autoprogrammer would do it.
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store (2 1) L car L e

store 0 m note e < m
car L e cdr L L
note e > m note L = nil
store e m stop

cdr L L

where store X Y assigns the value of X to Y, car X Y assigns the car of X
to Y (and similarly for cdr). note doesn’t petform any operation, but informs
the program synthesizer that we tested a condition. Actually the example given
wouldn't work in autoprogrammer—that system only performs numerical com-
putations. Nonetheless, the formats are very similar. It should be noted that
autoprogrammer can induct much of the program for us, saving the user the
effort of specifying these parts. Memory trace systems can’t do this at present,
as it is far more difficult to induce a pattern from a set of memory snapshots.
As one must do some programming oneself, program traces are an imperative,
rather than a declarative specification.

Natural language specifications are straightforward enough: one uses English
sentences to describe the problem. Naturally, one is restricted to a predeter-
mined subset of English--one is also usually restricted to a specific problem
domain. For more information, consult [25].

3.2 Classification of Program Synthesis Mcthods

As stated before, there are two aspects of synthesizing a program from a set of
specifications: that of having a hody of knowledge for operating on the speci-
fications (which we labelled a “knowledge base™), and a system for using that
information to generate code {(the “code generator™). The knowledge hase for
an APS system is closely related to the method of specification, in the same
way that parsers are closely related to lexical analyzers - just as parsers convert
tokens to syntactic structures that are later converted to code, so our knowledge
base converts specifications to procedural structures that are later converted to
code. Therefore, we list each specification method and discuss the corresponding
knowledge base:

Logic statements The knowledge base contains logical axioms like

flz) = (f(x) ~glz)y v (flz)  g(s))

and axioms of nonlogical constructs like

(Fr € e L) f(2)] <= fle) v (32 & D)[f(x)]

where €.L and L are lists of ¢lements.

Input-output pairs The knowledge base contains tules and information that
enable us to induct on the examples. That is, it allows us to apply the
rules uncovered in the examples to more general inputs.
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Program traces The knowledge base contains rules on constructing generic
tests and code constructs (loops, branches).

Natural language The knowledge base contains rules for converting human
language into an internal unambiguous representation.

Classifying code generation techniques is more difficult. In some cases, the
method of code generation is determined by the knowledge base but in others it
isn’t. For instance, if we use some sort of semantic network to represent the de-
sired program (as in [4,25,28]), the code generator will clearly need to transform
semantic structures into program statements. However, if we've represented our
knowledge in the form of logical axioms, we can either store these in a data base
and invoke them when they match our partially-derived specifications (as in
[30]) or else we can embed these axioms in the code generator itself (along the
lines of [10], but more like the decision table system as in [14}).

Basically, all methods of code generation involve translation, from an inter-
nal representation of the problem to a form a compiler can utilize. If either
tepresentation scheme subsumes the other, the translation can be purely syn-
tactic. For instance, in most logic-oriented systems [13,15,16,26,30,35], the code
generator sees both the final derivation of the specification and the code it is
to construct as a string of tokens. Thus, one need only replace tokens with to-
kens. But if neither representation can subsume the other, there must be some
semantic translation. For example, in most “knowledge-based” APS systems
{1.4,25,28], the internal representation is a semantic network. Transformation
of a semantic network to a program is nontrivial—indeed, most systems use
heuristics to perform the translation rather than provably correct algorithms.
Likewise, program trace systems internally represent the problem as a flow dia-
gram, which also requires syntactic translation to generate linear code. Thus, it
would appear that syntactic versus semantic translation is a fundamental clas-
sification. But there are other equally important but less universal means of
classifying synthesis methods:

e Several systems use an internal knowledge base in the process of generating
code. For instance, PSI has an internal model system that serves as in-
termediate code between the uset’s specification and the code generation.
PROTOSYSTEM-I has several internal languages. But logic-otiented sys-
tems in general have no such intetlingua.

e Some synthesis algorithms approach the problem from a nonstandard per-
spective. Forinstance, TRINS [38] uses an Al approach to choose between
rules. programwriter incorporates an idea list in the course of generating
problems. Novel ideas will require novel means of classification.
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4 Conclusions

Having classified the existing methods of automatic program synthesis, we can
now make some conclusions about APS systems in general. First of all, it is
clear there is still much work to be done. In most cases, the programs generated
were ones a competent programmer would have little difficulty constructing. As
Sumniers says in [37): “No paper on automatic LISP programming is complete
without ... the program reverse.” Reversing a list of elements is typically one of
the first recursive programs a student is taught. Systems with input-output pair
specifications (like [37]) tend to restrict themselves to transfer problems—that
is, problems where the input is copied to the output without any modification.
Some systems, like programwriter [28] and PSI [4], iiave attempted realistic
problems, unfortunately the authors don’t know how successful they were or
what range of problems they attempt to solve. There is relatively little available
commercially, and even what is out there has been slow to be accepted [14].
Some companies, like AT&T [19] and Schlumberger [3], are developing their
own APS systems.

It is also clear that different methods have their advantages and disadvan-
tages. For instance, logic-oriented systems can be used for any computable
problem and involve mostly syntactic transforinations (which are relatively easy
to generate). However, the specifications are diflicult to produce correctly for
nontrivial problems (although systems like DEDALUS are more approachable).
Natural language systems are easier to give specifications in, but require vast
amounts of information to decode the specifications, thus the problem domains
are usually quite limited. A lot of work has been done in both these areas, and
there appears to be no consensus on which specification method should be used.

Despite a lack of commercially sound results, there are many good reasons
for developing APS systems:

o The cost of software is rising, especially in relation to the cost of hardware
[12]. Therefore, it makes sense to use hardware to develop software.

Modifying a program can be done by modifying the specification and re-
running the APS system, which is a good deal cleaner than splicing in
code.

The generated program is portable, and can be linked to already existing
libraries. Tools and environments, in general, cannot.

e In some systems [16,28], one can develop several interrelated programs at
one time.

e In many cases ({9.24] and any input-output system), one can provide a
partial specification and the system will either make assumptions about
the rest or prompt for more information (or hoth).
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e Especially with logic-oriented systems, the software is provably correct.

For these reasons and others, it is important that we continue to research
the development of provably correct and commercially sound APS systems. The

reader is referred to [5,6,7] for more information on specific APS systems and
methods.

5 Final Remarks

In writing this paper, the authors focussed their attention on a relatively re-
stricted set of systems, namely those that generated complete programs with no
foreknowledge of the program desired. That is to say, systems that generated
programs knowing only the inputs to the program, the desired outputs to the
program, and one or more techniques of creating code that will generate the de-
sired outputs fromn the inputs. Several of these systems had a restricted domain
{NLPQ, for instance, restricts itself to programs that simulate servicing a queue
of customers [25]}, but the knowledge of the domain does not include predefined
methods of generating programs that solve problems under that domain.

In choosing to restrict our attention this way, the authors neglected the
highly commercial and productive area of application generation. Although
many systems mentioned by Cardenas [14] would fall under this category, of
more interest are screen and report generators, particularly as elements of so-
called fourth generation language (4GL) systems. These generators use standard
text formatting routines (much like curses in the UNIX operating system), but
are incorporated with a database management system. This saves a lot of effort
in generating customized interfaces between the user and the application, and
is therefore highly valuable.

Generally speaking, an application generator creates programs that perform
specific tasks using well known, optimized (i.e. precoded) techniques. The sys-
tems in Cardenas® paper produce source code, most 4GL systems produce object
code. Application generators share many of the same valuable characteristics of
program synthesizers—including portability, ease of modification, and greater
use of hardware to generate software. And they are available for use the general
public. But on the downside, specifications are either programs (in the case
of 4GL systems) or answers to prerestricted guestions (in the case of decision
table/questionnaire/customizing systems). Further, they can only be of limited
use in generating programs that we have no apparently optimal solution for.
One can see why research has concentrated on synthesis of programs, rather
than generation.

Of course, there has been a good deal of research in program generation,
particularly generation of parsers and compilers [32,34]. Interesting reseatch
in program generation has been done even in recent vears, in areas as diverse
as Gaussian elimination [3] and generic user interfaces [17,18]  While many
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of these generators work in less understood problem domains using less un-
derstood algorithms than application generators—and indeed less understood
domains than many APS systems work under—we always know in advance what
programs will be generated, barring errors in the design and/or implementation
of the generator. And this makes the generator a tool rather than an objert of
research.
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Appendix A List of APS Systems

This is a list of some of the major antomatic program synthesis systems,

all developed in the past 20 years. The systems are given in approximately

N chronological order, and include the name and author of the system, a brief
description of the method of input to the system, the knowledge base (KB)

t representing all information used to synthesize programs, and the method of

Y code generation (C'G). In those cases where the method of code generation

couldn’t be determined from the papers read, a question matk is given.

. PROW

R J Waldinger

v

¢ Input: Conditional relation

. KB: Waldinger-Lee algorithm

\' CG: Logical manipulation via the Waldinger-Lee Algorithm

\S

N NLP(Q)

G Heidorn
Input: A subset of natural language, on a specific domain (serving objects that

. must wait in line).

L]

; KB: Rules for converting natural language to a semantic network, knowledge

of the problem domain, logical/mathematical knowledge
CG: ?

L PROTOSYSTEM-I

. Project MAC

:: Input: English statements converted to MAPL

; KB: Translation rules, rules for handling conventional program features

N CG: Simulation of MAPL statements, with suggestions for improvement in case

: of failure

-

- I'c

j F E Petry &_

: Input: Memoty trace from a sample computation, list of functions, variables :';"

'/' and conditions used in the sample computation N
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KB: Rules for finding potential statements, for ordering candidates by likelihood
of working, for finding the minimum program size

CG: Take the set of candidate statemnents, attempt to create a minimal flow dia-
gram. Backtrack to previous statements if we can’t get a proper program.
If no program is possible, increase the number of statements allowed

autoprograminer
A W Biermann, R Krishnaswamy, R I Baum, F E Petry

Input: Partial tn situ traces of the program
KB: Generation of optimal flow diagrams, condition testing, induction of loops
CG: Transformation to flow diagrams

THESYS
P D Summers

Input: A set of example input-output pairs

KB: Rules for induction on list elements

CG: Convert outputs to elements of input list, look for a pattern. If one can’t
be found, try introducing a variable

C2

T J Biggerstafl

Input: Sample input-possible output pairs

KB: Algorithm for creating a function strategy tree, generalizing to a control
graph. and reformatting to a LISP program. Logical manipulation of
function requirements

C'G: Generation of the function strategy tree, control graph, and mapping the
graph to a LISP program

PSI

€' Green et al

Input: Natural language sentences or program traces

KB: A set of interacting modules, converters/translators from internal form to
internal form; property, query and refinement rules (in PECOS)

12

A - I ' ‘*‘ v '*'*-*"-f‘f"- -*-*-}-

855 B¢ g 3%, 1%, ) J8 0% V). Wy %y, W%y,

LRI RN VR DR A I VR R R R T L IR A N V] P T I I I L P T e e
! o II‘J‘J‘ LN 4 o’ S, AN LHLG LSOO, N

™
A

[Vl o ol
”. [ ]
e,

[P SIS
2 -."\(_'.‘-.?.

e

5 %
S

l-."."-{n o
v *x

>

(g

‘n
')
14

LA

'
s L}

'
(]

-,-ﬂ.
r
£

o
R r
, €

5% Y

oL "

SN

L% p &
el
" _l-"f,“, PO

“
Yooy

7@

x &7

. &
e e a' e

" .J.‘
Vel

< '.::.;

;jo O

;’LIL{I-

4

.77
4§ &

“J‘ \J'




MV
»

<
L 4

s;,

" g
3 =

) ]

",

7

N
.~ !
; ' CG: Two interacting modules—a code generator and an efficiency expert. The oy
A code generator applies rules of refinement to code, establishes properties, o)
. and tests for patterns under a prespecified heuristic agenda. The effi- o
ciency expert examines potential algorithms for optimality in space-time (

’ efficiency -}:
J .
-« . W
. programwriter S,
[- W J Long 3

Input: OWL-I specifications of input and output '
: KB: METHODs, SCHEMAs, INTENTS, IDEAs, DEFINITIONS; various infor- . :
! mation about how to achieve subgoals, and world knowledge divided into .': h
5 predefined interacting models—domain, argument passing and control, )

: . ~
) data, input/output, and target language ey

u

- CG: Two phases: an analyze/plan loop phase followed by a coding phase. The
analyze/plan loop orchestrates the used of METHOD:s, etc., to modify the
semantic network that represents the program under development. Goals
are invoked from a GOAL list, METHODs that fit are used to solve for the
' goal. SCHEMAs are used to corroborate disjoint goals. IDEAs are culled
") from an idea list when current METHODs fail. When the analyze/plan
loop generates the desired prograu set (can be ;1 program}, the coding

>
- N T

2%

v phase constructs a LISP program ',:\-'
) MODEL II N
N N S Prywes, A Pneuli, S Shastry :.

Input: Data structure and assertion-of-values specifications -
-

3 KB: Rules on manipulation of inputs, generation of correct nested loops .
o "W, 9 :.‘::
y CG: 1 2
! S
g Production Rule Mechanism .'

h A W Biermann and D R Smith -
. IR

Input: A single input-output specification in list form -
KB: Abstract pattern matching rules, rules for conditional construction ,.':

L CG: Generation of lambdas via application of the pattern matchers ;:. 4
: DEDALUS v
v Z Manna and R Waldinger
. Input: First-order logic sentences with syntactic sugar \-
v A
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KB: Rules of first-order logic, conditionality, recursion, etc.

CG: Logic-oriented syntactic transformation

PROSYN
R Follett

Input: First-order logic input-output specifications
KB: Rules for deriving passback pairs, for protecting already achieved goals

C'G: Generate the most specific pregoal for each goal, backtrack if we reach an
unsolvable goal

CYPRESS
D R Smith

Input: Logical input-output assertion of the form (Ve ¢ D)3z € R)[I: 2 = O:

(z,2}]

KB: RAINBOW, which generates the hest antecedent for a specification, al-
gorithm for construction of divide-and-conquer algorithms, knowledge of
specific domain and range types

CG: Application of the most specific antecedent to the divide-and-conquer al-
gorithm, backtrack if it fails

Synthetic Programming
N Dershowitz

Input: An output goal and a set of input and output assertions in a template
form

KB: Translational rules for creating desired ontput constructs
CG: Rule application with backtrack

TRINS
V Vojtek, L Molnar, and P Naveat

Input: Input; output specifications in the form compute:f(1) where:R(I)

KB. A set of potential transformation rules, heuristic weighing algotithms for
rules

(‘G For a (subjeomputation, find all applicable transformations, weigh each
rule, and pick the one with the towest weight. If there’s a condition,
pattition the input space
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